Diophantine equation of degree sixteen

Oliver Couto \& Seiji Tomita

Abstract

While there is not much publications, about degree sixteen Diophantine equation we do have an identity given by Ramanujan (ref. \#1). Also on the internet even though there are numerical solutions to degree sixteen for eg. (16-7-24) equation (ref. \#5) there are hardly any parametric solutions. An Octic degree parameterization has been arrived at by Choudhry \& Zagar (ref. 2). The authors have given a parametric solution to the equation: $\left(a^{4}--b^{4}\right)\left(c^{4}-\right.$ $\left.d^{4}\right)\left(e^{8}-f^{8}\right)=\left(u^{4}--v^{4}\right)\left(w^{4}-x^{4}\right)\left(y^{8}-z^{8}\right)$. We have also given numerical solution but because of the high degree (sixteen) we only get a minimum integer value for the variables at more than five digits. We have also given some new identities related to degree four \& eight.

Consider the below equation:

$$
\begin{equation*}
\left(a^{4}--b^{4}\right)\left(c^{4}-d^{4}\right)\left(e^{8}-f^{8}\right)=\left(u^{4}-v^{4}\right)\left(w^{4}-x^{4}\right)\left(y^{8}-z^{8}\right)--- \tag{1}
\end{equation*}
$$

Equation (1) was derived from using the below quartic equation:

$$
\left(a^{4}-b^{4}\right)\left(c^{4}-d^{4}\right)=m\left(p^{4}-q^{4}\right)
$$

Consider the below equation:

$$
m\left(a^{4}-b^{4}\right)=\left(c^{4}-d^{4}\right)\left(e^{4}-f^{4}\right)
$$

Theorem,
$m\left(a^{4}-b^{4}\right)=\left(c^{4}-d^{4}\right)\left(e^{4}-f^{4}\right)---(\mathrm{A})$

Eqn (A) has infinitely many integer solutions, where, $m=n\left(p^{2}+q^{2}\right)$ and n, p, q are arbitrary integer.

Proof,
We split eqn (A) into two simultaneous eqns.
$\left(p^{2}+q^{2}\right)\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)=0$

$$
\begin{equation*}
n\left(a^{2}-b^{2}\right)-\left(c^{2}-d^{2}\right)\left(e^{2}-f^{2}\right)=0 \tag{2}
\end{equation*}
$$

From eq(1), let $\{a, b, c, d\}=\{f u-e v, e u+f v, p u+q v, q u-p v\}$
Then eq(2) becomes to

$$
\begin{align*}
& \left(n v^{2}-n u^{2}-p^{2} * u^{2}-4 p u q v-q^{2} v^{2}+q^{2} u^{2}+p^{2} v^{2}\right) e^{2} \\
& -4 n f u e v+n f^{2} u^{2}-p^{2} f^{2} v^{2}+p^{2} f^{2} u^{2}-n f^{2} v^{2}+q^{2} f^{2} v^{2}+4 p u q v f^{2}-q^{2} f^{2} u^{2} \tag{3}
\end{align*}
$$

For the quadratic in eq(3) to have rational solutions, the discriminant must be a rational square, then we get,

$$
\begin{aligned}
w^{2}=\left(-2 n q^{2}+2 n p^{2}\right. & \left.-2 p^{2} q^{2}+n^{2}+q^{4}+p^{4}\right) u^{4} \\
& +\left(8 n p q-8 p q^{3}+8 p^{3} q\right) v u^{3} \\
& +\left(2 n^{2}-2 q^{4}-2 p^{4}-4 n p^{2}+4 n q^{2}+20 p^{2} q^{2}\right) v^{2} u^{2} \\
& +\left(-8 p^{3} q+8 p q^{3}-8 n p q\right) v^{3} u \\
& +\left(-2 n q^{2}+2 n p^{2}-2 p^{2} q^{2}+n^{2}+q^{4}+p^{4}\right) v^{4} .
\end{aligned}
$$

Let, $\quad U=\frac{u}{v}, W=\frac{w}{v^{2}}, \quad$ then we get quartic eqn:
$W^{2}=$

$$
\begin{aligned}
\left(p^{2}-q^{2}+n\right)^{2} & U^{4}+\left(8 p q n-8 p q^{3}+8 p^{3} q\right) U^{3} \\
& \quad+\left(2 n^{2}+4 q^{2} n+20 p^{2} q^{2}-4 p^{2} n-2 q^{4}-2 p^{4}\right) U^{2}+\left(8 p q^{3}-8 p q n-8 p^{3} q\right) U \\
& +\left(p^{2}-q^{2}+n\right)^{2} \ldots \ldots \ldots \ldots(4)
\end{aligned}
$$

This quartic has a rational point,

$$
Q(U, W)=\left(0, p^{2}-q^{2}+n\right)
$$

so is birationally equivalent to an elliptic curve below.

$$
\begin{aligned}
& Y^{2}-8 p q Y X+\left(32 p^{3} q n-32 p^{3} q^{3}+16 p^{5} q-32 q^{3} * p n+16 q^{5} p+16 p q n^{2}\right) Y \\
& =X^{3}+\left(2 n^{2}-4 p^{2} n+4 q^{2} n-2 q^{4}-2 p^{4}+4 p^{2} q^{2}\right) X^{2} \\
& +\left(16 p^{2} q^{6}+48 p^{4} q^{2} n-48 p^{2} q^{4} n+48 p^{2} q^{2} n^{2}+16 q^{2} n^{3}-24 q^{4} n^{2}-16 p^{2} n^{3}-16 p^{6} n\right. \\
& \left.\quad-24 p^{4} q^{4}+16 q^{6} n+16 p^{6} q^{2}-24 p^{4} n^{2}-4 p^{8}-4 q^{8}-4 n^{4}\right) X \\
& +104 q^{8} n^{2}-96 q^{6} n^{3}-160 p^{6} q^{6}-48 p^{2} q^{10}+120 p^{4} q^{8}-48 p^{10} q^{2}-48 q^{10} n+120 p^{8} q^{4} \\
& \quad+48 p^{10} n+104 p^{8} n^{2}+96 p^{6} n^{3}+24 p^{4} n^{4}-16 p^{2} n^{5}+24 q^{4} n^{4} \\
& +16 q^{2} n^{5}+8 p^{12}+8 q^{12}-8 n^{6}-416 p^{2} q^{6} n^{2}+240 p^{2} q^{8} n-480 p^{4} q^{6} n-288 p^{4} q^{2} n^{3} \\
& \quad+624 p^{4} q^{4} n^{2}+480 p^{6} q^{4} n-416 p^{6} q^{2} n^{2}-240 p^{8} q^{2} n+288 p^{2} q^{4} n^{3} \\
& \quad-48 p^{2} q^{2} n^{4}
\end{aligned}
$$

This elliptic curve has a point

$$
P(X, Y)=\left(-2 n^{2}+4 p^{2} n-4 q^{2} n+2 q^{4}+2 p^{4}-4 p^{2} q^{2},-32 p q n^{2}\right) .
$$

According to Nagell-Lutz theorem, this point P is of infinite order, and the multiples $\mathrm{kP}, \mathrm{k}=2,3, \ldots$ give infinitely many points.
Then simultaneous equations (1),(2) has infinitely many integer solutions.
$2 \mathrm{Q}(\mathrm{U})$ corresponding to $2 \mathrm{P}(\mathrm{X}, \mathrm{Y})$ is

$$
\mathrm{U}=\frac{4 q p\left(p^{2}-q^{2}+n\right)}{(q-p)(q+p)\left(-q^{2}+p^{2}+2 n\right)}
$$

then we get,

$$
\begin{array}{r}
a=p^{8}+4 p^{7} q+\left(-4 q^{2}+4 n\right) p^{6}+\left(8 n q-12 q^{3}\right) p^{5}+\left(6 q^{4}+4 n^{2}+4 n q^{2}\right) p^{4}+ \\
\left(-16 n q^{3}+12 q^{5}\right) p^{3}+\left(8 q^{2} n^{2}-4 q^{4} n-4 q^{6}\right) p^{2}+\left(8 n q^{5}-4 q^{7}\right) p+ \\
\left(4 n^{2} q^{4}-4 n q^{6}+q^{8}\right)
\end{array}
$$

$$
\begin{aligned}
b=p^{8}-4 p^{7} q & +\left(-4 q^{2}+4 n\right) p^{6}+\left(-8 n q+12 q^{3}\right) p^{5}+\left(6 q^{4}+4 n^{2}+4 n q^{2}\right) p^{4} \\
& +\left(16 n q^{3}-12 q^{5}\right) p^{3}+\left(8 q^{2} n^{2}-4 q^{4} n-4 q^{6}\right) p^{2}+\left(-8 n q^{5}+4 q^{7}\right) p \\
& +4 n^{2} q^{4}-4 n q^{6}+q^{8}
\end{aligned}
$$

$$
\begin{gathered}
c=3 p^{4} q+\left(-2 q^{3}+2 n q\right) p^{2}+2 n q^{3}-q^{5} \\
d=p^{5}+\left(2 q^{2}+2 n\right) p^{3}+\left(-3 q^{4}+2 n q^{2}\right) p \\
e=p^{4}+\left(-2 q^{2}+2 n\right) p^{2}-4 n p q-2 n q^{2}+q^{4} \\
f=p^{4}+\left(-2 q^{2}+2 n\right) p^{2}+4 n p q-2 n q^{2}+q^{4}
\end{gathered}
$$

We substitute, $n=q^{2} \quad$ \& we get,

$$
\begin{gathered}
(\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \mathrm{e}, \mathrm{f})=\left(p^{4}+4 p q^{3}-q^{4}\right)^{2},\left(p^{4}-4 p q^{3}-q^{4}\right)^{2} \\
\left(p^{5}+4 p^{3} q^{2}-p q^{4}, 3 p^{4} q+q^{5}\right),\left(p^{4}+2 p^{3} q-2 p^{2} q^{2}+2 p q^{3}+q^{4}\right), \quad\left(p^{4}-2 p^{3} q\right. \\
\left.-2 p^{2} q^{2}-2 p q^{3}+q^{4}\right)
\end{gathered}
$$

Also, (a, b), becomes an eight power.
So we now have an eqn shown below:

$$
\begin{gathered}
m\left(u^{8}-v^{8}\right)=\left(c^{4}-d^{4}\right)\left(e^{4}-f^{4}\right)--------(a) \\
\text { where },(a, b)=\left(u^{2}, v^{2}\right)
\end{gathered}
$$

$$
m=(n)\left(p^{2}+q^{2}\right)=q^{2}\left(p^{2}+q^{2}\right) \text { since we have } n=q^{2}
$$

Section (B)

Consider the below eqn:

$$
\begin{equation*}
\left(a^{4}-b^{4}\right)\left(c^{4}-d^{4}\right)=m_{1}\left(y^{8}-z^{8}\right)--- \tag{1}
\end{equation*}
$$

$$
\left(u^{4}-v^{4}\right)\left(w^{4}-x^{4}\right)=m_{2}\left(e^{8}-f^{8}\right)----(2)
$$

where,

$$
\begin{aligned}
& m_{1}=q^{2}\left(p^{2}+q^{2}\right) \\
& m_{2}=s^{2}\left(r^{2}+s^{2}\right)
\end{aligned}
$$

And eqn (1) $\&(2)$ are of the form parametrized in section (A) above as eqn (a)
we take, $\quad m_{1}=m_{2}$

Dividing eqn (1) by eqn (2) \& cross multiplying we get:

$$
\left(a^{4}-b^{4}\right)\left(c^{4}-d^{4}\right)\left(e^{8}-f^{8}\right)=\left(u^{4}-v^{4}\right)\left(w^{4}-x^{4}\right)\left(y^{8}-z^{8}\right)
$$

Now since we need, $\quad m_{1}=m_{2}$

$$
\begin{gathered}
m_{1}=q^{2}\left(p^{2}+q^{2}\right) \\
m_{2}=s^{2}\left(r^{2}+s^{2}\right) \\
\text { Hence, } \quad q^{2}\left(p^{2}+q^{2}\right)=s^{2}\left(r^{2}+s^{2}\right)
\end{gathered}
$$

Above is parametrized as:

$$
\begin{aligned}
& p=\left(2 k^{2}+22 k-7\right) \\
& q=8(k+1)(k-2) \\
& r=2\left(8 k^{2}-2 k+17\right) \\
& s=4\left(k^{2}-k-2\right)
\end{aligned}
$$

For, $k=1$ we get:

$$
(p, q, r, s)=(17,16,46,8)
$$

From section (A) we have parametric form for,
(a,b, c, d,e,f) \& (u,v,w,x,y,z) as below:

$$
\begin{gathered}
a=p^{4}+4 p q^{3}-q^{4} \\
b=p^{4}-4 p q^{3}-q^{4} \\
c=p^{5}+4 p^{3} q^{2}-p q^{4} \\
d=3 p^{4} q+q^{5} \\
e=r^{4}+2 r^{3} s-2 r^{2} s^{2}+2 r s^{3}+s^{4} \\
f=r^{4}-2 r^{3} s-2 r^{2} s^{2}-2 r s^{3}+s^{4}
\end{gathered}
$$

$$
\begin{gathered}
u=r^{4}+4 r s^{3}-s^{4} \\
v=r^{4}-4 r s^{3}-s^{4} \\
w=r^{5}+4 r^{3} s^{2}-r s^{4} \\
x=3 r^{4} s+s^{5} \\
y=p^{4}+2 p^{3} q-2 p^{2} q^{2}+2 p q^{3}+q^{4} \\
z=p^{4}-2 p^{3} q-2 p^{2} q^{2}-2 p q^{3}+q^{4}
\end{gathered}
$$

For, $(p, q, r, s)=(17,16,46,8)$, we get for:

$$
\left(a^{4}-b^{4}\right)\left(c^{4}-d^{4}\right)\left(e^{8}-f^{8}\right)=\left(u^{4}-v^{4}\right)\left(w^{4}-x^{4}\right)\left(y^{8}-z^{8}\right)
$$

where:
$a=296513, b=260543, c=5336657, d=5057584, e=5815184, f=2606224$ $u=4567568, v=4379152, w=230692576, x=107491712, y=297569, z=$ 295391

A different eight degree parametric Identity is given below:

$$
\left(p^{4}-q^{4}\right)=m\left(r^{4}-s^{4}\right)\left(t^{4}-u^{4}\right)---(1)
$$

where:

$$
\begin{aligned}
& p=2\left(50 m^{2}-37 m+5\right) \\
& q=2\left(10 m^{2}+13 m-5\right) \\
& r=3(3 m-1) \\
& s=7 m-1 \\
& t=10 m-1 \\
& u=10 m-7
\end{aligned}
$$

For $m=3$ we get:

$$
\left(86^{4}-31^{4}\right)=3\left(6^{4}-5^{4}\right)\left(29^{4}-23^{4}\right)
$$

A sixteen degree parametric identity is given below:
Consider the below eqn:

$$
\begin{equation*}
(m-n)(u-v)=4(x-y)(z-w)----- \tag{1}
\end{equation*}
$$

where:

$$
\begin{gathered}
m=a^{8}+b^{8}+c^{8} \\
n=d^{8}+e^{8}+f^{8} \\
u=p^{8}+q^{8}+r^{8} \\
v=s^{8}+t^{8}+u^{8} \\
x=(a b)^{4}+(b c)^{4}+(c a)^{4} \\
y=(d e)^{4}+(d f)^{4}+(e f)^{4} \\
z=(p q)^{4}+(p r)^{4}+(q r)^{4} \\
w=(s t)^{4}+(s u)^{4}+(t u)^{4} \\
(m-n)(u-v)=4(x-y)(z-w)
\end{gathered}
$$

Hence we have:

$$
\begin{align*}
& {\left[\left(a^{8}+b^{8}+c^{8}\right)-\left(d^{8}+e^{8}+f^{8}\right)\right]} \\
& =2\left[\left((a b)^{4}+(b c)^{4}+(c a)^{4}\right)-\left((d e)^{4}+(d f)^{4}+(e f)^{4}\right)\right]---(2) \tag{2}\\
& {\left[\left(p^{8}+q^{8}+r^{8}\right)-\left(s^{8}+t^{8}+u^{8}\right)\right]} \\
& =2\left[\left((p q)^{4}+(p r)^{4}+(q r)^{4}\right)-\left((s t)^{4}+(s u)^{4}+(t u)^{4}\right)\right]---(3) \tag{3}
\end{align*}
$$

Above eqn (2) $\&(3)$ is satisfied at:

$$
\begin{aligned}
& (a, b, c, d, e, f)=(732,804,342,293,513,536) \\
& (p, q, r, s, t, u))=(63232,71825,76032,104593,61776,88400)
\end{aligned}
$$

And $(a, b, c, d, e, f) \&(p, q, r, s, t, u)$ are having parametrization as given in ref.(2) by Choudhry \& Zargar paper

On multiplying eqn (2) \&(3)above, we get eqn (1) above which is a sixteen degree equation.

We have the below quartic equation:

$$
a^{4}+b^{4}+a b\left(a^{2}+a b+b^{2}\right)=c^{4}+d^{4}+c d\left(c^{2}+c d+d^{2}\right)---(1)
$$

Taking:

$$
[a=p t+m, b=q t+n, c=p t-m, d=q t-n]---(2)
$$

In the above eqn, (1), we noticed there was a pattern in the numerical solutions for (p,q) to eqn. (1)
we took: $\quad p=u^{2} \& q=v^{2}$
After substituting above (and using maple software) we then took,

$$
(m, n)=\left(\left(u^{2}-2 u v+2 v^{2}\right),\left(2 u^{2}-2 u v+v^{2}\right)\right)
$$

and we noticed that eqn (1) is satisfied at $t=[(u+v /(u-v)]$.
Thus we get the below parametric solution:

$$
\begin{gathered}
a=u^{3}-u^{2} v+2 u v^{2}-v^{3} \\
b=v^{3}+2 u^{2} v-u v^{2}-u^{3} \\
c=u^{3}-2 u^{2} v+2 u * v^{2} \\
d=2 v u^{2}-2 u v^{2}+v^{3}
\end{gathered}
$$

For, $\quad(u, v)=(8,7)$ we get numerical solution:

$$
(a, b, c, d)=(101,67,91,80)
$$

Ramanujan equation:

Ramanujan, gave a sixteen degree parametric identity \& is shown below:

$$
\begin{gather*}
45\left(\left(a^{8}+b^{8}+(a+b)^{8}\right)-\left(d^{8}+e^{8}+(d+e)^{8}\right)\right)^{2}= \\
64\left(\left(a^{10}+b^{10}+(a+b)^{10}\right)-\left(d^{8}+e^{8}+(d+e)^{8}\right)\right) * \\
\left(\left(a^{6}+b^{6}+(a+b)^{6}\right)-\left(d^{6}+e^{6}+(d+e)^{6}\right)\right) \tag{1}
\end{gather*}
$$

Condition is: $a^{2}+a b+b^{2}=c^{2}+c d+d^{2}$
Above eqn (1) has parameterization:

$$
\begin{gathered}
(a, b, c, d)=((x+y+1),(x y-1),(x y+y+1),(x-y)) \\
\text { for, }(x, y)=(3,2) \text { we get }:(a, b, c, d)=(6,5,9,1)
\end{gathered}
$$

Hence the degree sixteen numerical solution is,

$$
\begin{gathered}
45\left(\left(6^{8}+5^{8}+11^{8}\right)-\left(9^{8}+1^{8}+10^{8}\right)\right)^{2}= \\
64\left(\left(6^{10}+5^{10}+11^{10}\right)-\left(9^{10}+1^{10}+10^{10}\right)\right) *\left(\left(6^{6}+5^{6}+11^{6}\right)-\left(9^{6}+1^{6}+10^{6}\right)\right)
\end{gathered}
$$

References:

1) Degree sixteen equation, Ramanujan, Wolfram math world, Diophantine equation
https://mathworld.wolfram.com/Ramanujan 6-10-8.
2. Octic Diopantine equation. A. Choudhry \& A. Zargar,

Arxiv, 2206.14084v1 dated 28 June 2022.
3. Generalized Parametric Solutions to Multiple Sums of Powers Oliver Couto \& Seiji Tomita, Universal Journal of Applied

Mathematics 3(5): 102-111, 2015 http://www.hrpub.org
DOI: 10.13189/ujam.2015.030503
4. A new diophantine equation involving fifth powers, Oliver Couto \& Ajai Choudhry, Acta Arithmetica journal, 15 June 2021, DOI: 10.4064/aa210419-4-7.
5. Website, Oliver Couto, www.celebrating-mathematics.com
6. Jaroslaw Wroblewski \& Ajai Choudhry. Ideal solutions of the Tarry-Escott problem of degree eleven with applications to sums of thirteenth powers. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 2008, 31, pp.1-13.
7. Website, Seiji Tomita website: www.maroon.dti.ne.jp/fermat/eindex.html
8. Tito Piezas web site for degree eleven and higher powers,(sites.google.com/site/tpiezas/031)
9. Database numerical solutions degree 16, etc. (http://euler.free.fr/database.txt)

Contact info:

Oliver Couto
University of Waterloo,
Ontario, Canada.
Email: matt345@celebrating-mathematics.com

Seiji Tomita

Japan Computer Company
Tokyo, Japan.
Email:fermat@m15.alpha-net.ne.jp

